

Digital Stepper Drive 3DM2080 Manual

Precision Bearing House®

B 97/4 Naraina Industrial Area Phase I New Delhi India Ph# +919310028857

www.pbh.in

Email: ss@pbh.in

New Delhi - Ahmedabad - Chennai

Thanks for selecting Maxima stepper motor driver. We hope that the superior performance, outstanding quality, excellent cost performance of our product can help you accomplish your motion control project.

The content in this manual has been carefully prepared and is believed to be accurate, but no responsibility is assumed for inaccuracies.

All the contents of this manual, copyright is owned by the Precision Bearing House, without Precision Bearing House's permission, no unit or individual/ organisation is allowed to copy.

Precision Bearing House

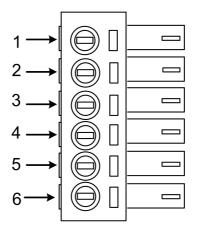
Version	Editor	Verifier
V1.8	R&D	R&D

Contents

1. Overview	4 -
2. Features	4 -
3. Ports Introduction	5 -
3.1 Control Signal Input Ports	5 -
3.2 ALM signal output ports	5 -
3.3 Power Interface Ports	7 -
4. Technological Index	- 8 -
5. Connections to Control Signal	9 -
5.1 Connections to Common Anode	9 -
5.2 Connections to Common Cathode	10 -
5.3 Connections to Differential Signal	11 -
5.4 Connections to 232 Serial Communication Interface	12 -
5.5 Sequence Chart of Control Signals	12 -
6. DIP Switch Setting	13 -
6.1 Activate Edge Setting	13 -
6.2 Running Direction Setting	14 -
6.3 Micro steps Setting	14 -
7. Faults alarm and LED flicker frequency	15 -
8. Appearance and Installation Dimensions	17 -
9. Typical Connection	17 -
10. Parameter Setting	19 -
11. Processing Methods to Common Problems and Faults	24 -
11.1 Power on power light off	- 24 -
11.2 Power on red alarm light on	25 -
11.3 After input pulse signal but the motor not running	25 -

1. Overview

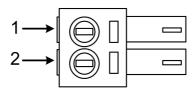
The 3DM2080 is a three phase digital stepper driver based on DSP. Its Micro step resolutions and output current are programmable. And it has advanced control algorithm, which can brings a unique level of system smoothness, provides optimum torque and mid-range instability. The control algorithm of Multi-Stepping can make stepper motor has smooth system performance. The control algorithm of torque compensation can improve the torque of motor in the high speed. The control algorithm of motor self-test and parameter auto-setup technology offers optimum responses with different motors and easy-to-use. The control algorithm of smoothness can enhance the acceleration and deceleration of motor. Its unique features make the 3DM2080 to be an ideal solution for applications.


2. Features

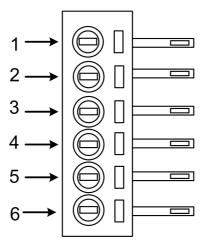
- Parameter auto-setup and motor self-test
- Multi-Stepping inside
- Small noise, low heating, smooth movement
- Torque compensation in high speed
- Variable current control technology, High current efficiency
- Accelerate and decelerate control inside, Great improvement in smoothness of starting or stopping the motor

- Support PUL/DIR and CW/CCW modes
- Storage the position of motor
- Optically isolated input and compatible with 5V or 24V
- User-defined micro steps
- Microstep resolutions and Output current programmable
- Over current, over voltage and low voltage protection
- Green light means running while red light means protection or off line

3. Ports Introduction


3.1 Control Signal Input Ports

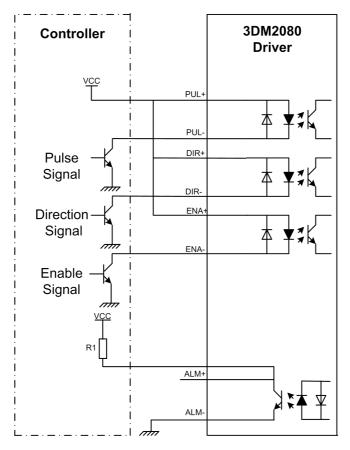
Port	Symbol	Name	Remark
1	DIR-	Direction signal-	Compatible with
2	DIR+	Direction signal+	5V or 24V


3	PLS-	Pulse signal -	Compatible with
4	PLS+	Pulse signal +	5V or 24V
5	ENA-	Enable signal -	Compatible with
6	ENA+	Enable signal +	5V or 24V

3.2 ALM signal output ports

Port	Symbol	Name	Remark
1	ALM+	Alarm output +	
2	ALM-	Alarm output -	¥\$K

3.3 Power Interface Ports

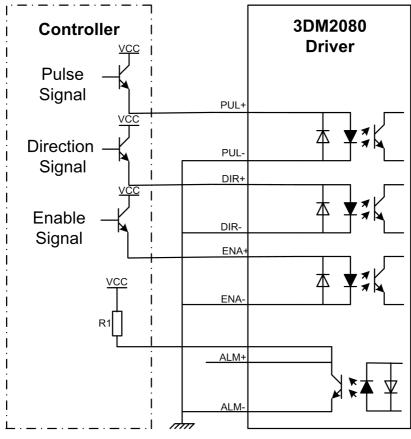

Port	Identification	Symbol	Name	Remark	
1	Motor Phase	U	Phase U		
2	Wire Input Ports	V	Phase V	Motor Phase	
3	whe input rolts	W	Phase W		
4	NC	NC	No Contact		
5	Dowor Input	AC1	AC80V-2	960V	
6	Power Input Ports	AC2	AC80V-2	.00 v	

4. Technological Index

Input Voltage		80~260VAC		
Output	Current	8A		
Pulse Frequ	lency max	200K		
Communic	cation rate	57.6Kbps		
		• Over current peak value 15A±10%		
Prote	ction	• Over voltage value 400VDC		
Overall Dimen	sions (mm)	192×127×85		
Weight		Approximate 1500g		
	Environment	Avoid dust, oil fog and corrosive gases		
	Operating	+70°C Max		
Environment	Temperature	+70 C Max		
	Storage	-20°C~+80°C		
Specifications	Temperature	-20 C~+80 C		
	Humidity	40~90%RH		
	Cooling	Natural cooling or forced air cooling		
	method			

5. Connections to Control Signal

5.1 Connections to Common Anode

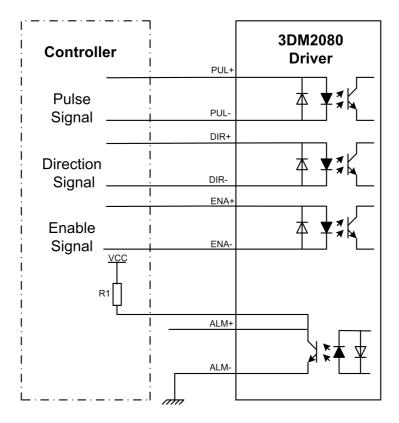


Remark:

VCC is compatible with 5V or 24V;

R1(3~5K) must be connected to control signal terminal.

5.2 Connections to Common Cathode



Remark:

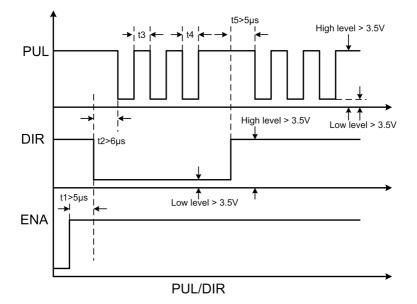
VCC is compatible with 5V or 24V;

R1(3~5K) must be connected to control signal terminal.

5.3 Connections to Differential Signal

Remark:

VCC is compatible with 5V or 24V;


R1(3~5K) must be connected to control signal terminal.

5.4 Connections to 232 Serial Communication Interface

PIN1		
Crystal Head Definition		Remark
foot		
1	TXD	Transmit Data
2	RXD	Receive Data
4	+5V	Power Supply to HISU
6	GND	Power Ground

5.5 Sequence Chart of Control Signals

In order to avoid some fault operations and deviations, PUL, DIR and ENA should abide by some rules, shown as following diagram:

Remark:

a. t1: ENA must be ahead of DIR by at least 5 μ s. Usually, ENA+ and ENA- are NC (not connected).

b. t2: DIR must be ahead of PUL active edge by 6 μ s to ensure correct direction;

c. t3: Pulse width not less than 2.5 μ s;

d. t4: Low level width not less than 2.5 μ s.

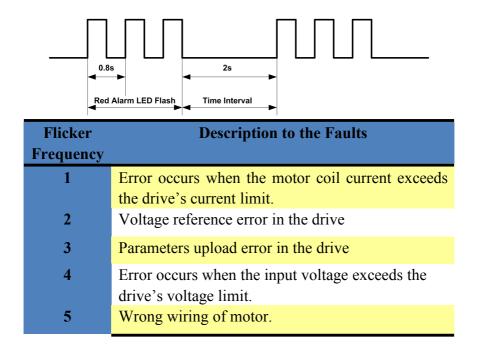
6. DIP Switch Setting

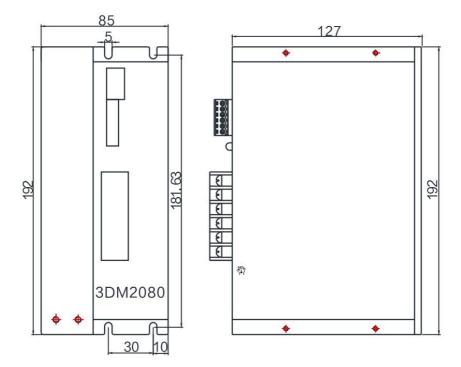
6.1 Current Setting

The current setting is in the following table.

Dial switch Current	SW1	SW2	SW3
Default	0	0	0
2.2A	1	0	0
3. 2A	0	1	0
4.5A	1	1	0
5.2A	0	0	1
6. 3A	1	0	1
7.2A	0	1	1
8. 2A	1	1	1

6.2 Standstill current Setting

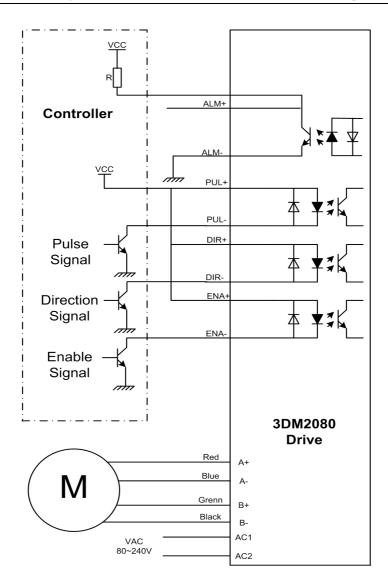

SW4 is used for setting the standstill current, "off" means the standstill current is set to be half of the selected dynamic current or other current, which can be set by the HISU, the details can be seen in the tenth sections. while "on" means the standstill current is set to be the same as the selected dynamic current.


6.3 Micro steps Setting

The micro steps setting is in the following table. And the micro steps can be also setting through the HISU. The details can be seen in the tenth sections.

Dial switch Micro steps	SW5	SW6	SW7	SW8
400	0	0	0	1
500	0	0	0	1
600	1	0	0	1
800	1	0	0	0
1000	0	1	0	1
1600	0	1	0	0
2000	1	1	0	0
3200	0	0	1	0
4000	1	0	1	0
5000	1	1	0	1
6000	0	0	1	1
6400	0	1	1	0
7500	1	0	1	1
8000	1	1	1	0
10000	0	1	1	1
30000	1	1	1	1

7. Faults alarm and LED flicker frequency



8. Appearance and Installation Dimensions

9. Typical Connection

Here is the typical connection of 3DM2280.

10. Parameter Setting

The parameter setting method of 3DM2080 drive is to use a HISU adjuster through the 232 serial communication ports, only in this way we can set the parameters we want. There are a set of best default parameters to the corresponding motor which are carefully adjusted by our engineers, users only need refer to the following table, specific condition and set the correct parameters.

Mode	Definition	Range	Dime- nsion	Drive Restart	Default Value
P1	Current loop Kp	0—4000	1	Y	500
P2	Current loop Ki	0—1000	1	Y	100
P3	Damping coefficient	0—500	1	Ν	200
P4	See the inductance of motor by motor self-test		0.1mh		
P5	Reserved				
P6	Amplitude of resonance point	0—1000	0.001	N	10
P7	Phase of resonance point	0—1000	0.001	N	50
P8	Reserved				
P9	Reserved				
P10	Enable signal level	0—1	1	Ν	1
P11	Reserved				

Actual value = Set value \times the corresponding dimension

P12	Alarm out level	0—1	1	Y	0
P13	Command Type	0—1	1	Y	0
P14	User-defined micro steps	4—1000	50	Y	0
P15	Time of standstill current	0—4000	1ms	N	1000
P16	Percentage of standstill current	0—100	1	Y	50
P17	Speed smoothness	0—10	1	Y	0
P18	Enable of position memory	0—1	1	Y	1
P19	User-defined inductance of motor	0—100	mh	Y	0
P20	User-defined resistance of motor	0—100	0.10hm	Y	0
P21	Result of position memory	0—128	1		0
P22	PUL filter	0—10	1	Y	3
P23	Lack phase detect enable	0—1	1	Y	0
P24	Initial current saturation	0-10	0.1A	N	2
P25	Erasure DSP				

There are total 22 parameter configurations, use the HISU to download the configured parameters to the drive, the detail descriptions to every parameter configuration are as follows:

Item	Description
Current loop Kp Current loop Ki	The P1 and P2 is used to set Kp and Ki of Current loop Kp at the moment of power-on. If you set the Kp is 500, the Kp and Ki is got by the Self-tuning algorithm. But when you set the Kp is not 500, the Kp and Ki is the values which you set.
Damping coefficient	This parameter is used to change the damping coefficient in case of the desired operating state is under resonance frequency.
Amplitude Phase of resonance point	Amplitude and Phase is adjustment for resonance, and compensate torque in high speed.
Enable signal level	This parameter is set to control the Enable input signal level, 0 means low, while 1 means high.
Alarm out level	This parameter is set to control the Alarm output signal level. 0 means the transistor is cut off when the drive is alarm, but when it comes to not, the

	transistor becomes conductive. 1 means opposite to 0.
User-defined micro steps	This parameter is set of user-defined micro steps. The actual micro steps = the set value \times 50. For example, if the parameter is 4, the micro steps is 4 \times 50 =800. But If this parameter is 0, which means micro steps is set by the outer DIP switches.
Time of standstill current	This parameter is set the time when the standstill current is set to be half of the selected dynamic current or other current,
Percentage of standstill current	This parameter is set the percentage of standstill current.
Speed smoothness	This parameter is set to control the smoothness of the speed of the motor while acceleration or deceleration, the larger the value, the smoother the speed in acceleration or deceleration.

	0 1 2 10
Enable of position memory	This parameter is set to enable the function of position memory. 0 means disable, while 1 means enable. If set 1, the 2DM2280can remember the position of motor in the next time of power on.
Command Type	This parameter is set to choice the PUL/DIR mode or CW/CCW mode. 0 means PUL/DIR mode,while means CW/CCW mode.
User-defined resistance of motor	This parameter is set the resistance of motor. 0 means 3DM2080 gets the resistance by control algorithm of Parameter auto-setup, while other parameter means 3DM2080 gets the resistance through user sets.
User-defined inductance of	This parameter is set the inductance of motor. 0 means 3DM2080 gets the inductance by control

motor	algorithm of Parameter auto-setup, while other
	parameter means 3DM2080 gets the inductance through user sets.
Result of position memory	This parameter is set to control the smoothness of Display the result of position memory
Time of enable position memory	This parameter is set of the time when enable the position memory. The time is mean the space of time to stop plus input.
PUL filter	This parameter is set the filter coefficient of PUL.
Lack phase detect enable	This parameter is to enable the function of lack phase test. 0 means enable,1 meas disable.
Initial current saturation	This parameter is to set the Initial current saturation.
Erasure DSP	If this parameter is 25,The DSP will be erased.

11. Processing Methods to Common Problems and

Faults

11.1 Power on power light off

 No power input, please check the power supply circuit. The voltage is too low.

11.2 Power on red alarm light on

- Please check the motor is connected with the drive.
- The stepper digital drive is over voltage or under voltage. Please lower or increase the input voltage.

11.4 After input pulse signal but the motor not running

- Please check the input pulse signal wires are connected in reliable way.
- Please make sure the input pulse mode is corresponding with the real input mode.
- The Driver is disabled